

Tearing Mode Instability in Magnetohydrodynamic Current Sheets

时辰

University of California, Los Angeles

cshi1993@ucla.edu

Marco Velli, Anna Tenerani, Fulvia Pucci, et al.

Outline

- Introduction—onset problem of reconnection
- Basic equations
- Boundary-layer problem
- Key results for the simplest 1D case
- 2D current sheet: aspect ratio matters
- Other effects: viscosity, Hall effect, guide field, etc.
- Conclusion

Magnetic reconnection—*explosive energy release*

CME and solar flare

substorm

Eastwood et al., 2017

Steadily-reconnecting current sheet

Onset of reconnection

Ideal MHD does not allow "reconnection" of field lines

- Need to break the "frozen-in" condition
- Generalized Ohm's law:

$$E + u \times B = \eta J + \frac{J \times B}{ne} - \frac{\nabla \cdot P_e}{ne} + \frac{m_e}{ne^2} \frac{\partial J}{\partial t}$$

resistivity Hall Electron Electron inertia

Resistivity can be induced by collisions or wave-particle interactions

Normalization of (viscous-resistive)-MHD equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$

$$\rho \left(\frac{\partial \mathbf{V}}{\partial t} + \mathbf{V} \cdot \nabla \mathbf{V} \right) = -\nabla P + \mathbf{J} \times \mathbf{B} + \nu \rho \nabla^2 \mathbf{V} \longrightarrow \text{ or } \nabla \cdot (\nu \rho \nabla \mathbf{V})$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

$$\frac{d(P \rho^{-\kappa})}{dt} = 0$$
Here we have neglected μ_0

MHD equation, like the Navier-Stokes equation, can be **non-dimensionalized**.

From the three values, we can further define reference speed and time:

$$\overline{V} = \frac{B}{\sqrt{\mu_0 \overline{\rho}}}$$
$$\tau = L/\overline{V}$$

and pressure:

$$\bar{P} = \bar{\rho}\bar{V}^2 = \bar{B}^2/\mu_0$$

We can then normalize all the fields to the above values, e.g., $\rho = \overline{\rho} \widetilde{\rho}, V = \overline{V} \widetilde{V}$ Here the "~" values are normalized fields. Note that the derivatives also need to be normalized:

$$\frac{\partial}{\partial t} = \frac{1}{\tau} \frac{\partial}{\partial \tilde{t}}, \qquad \nabla = \frac{1}{L} \widetilde{\nabla}$$

The MHD equation set becomes:

The MHD equation set becomes:

$$\frac{\partial \tilde{\rho}}{\partial \tilde{t}} + \tilde{\nabla} \cdot \left(\tilde{\rho} \tilde{V}\right) = 0$$

$$\tilde{\rho} \left(\frac{\partial \tilde{V}}{\partial \tilde{t}} + \tilde{V} \cdot \tilde{\nabla} \tilde{V}\right) = -\tilde{\nabla} \tilde{P} + \tilde{J} \times \tilde{B} + \frac{1}{R} \tilde{\rho} \tilde{\nabla}^2 \tilde{V}$$

$$\frac{\partial \tilde{B}}{\partial \tilde{t}} = \tilde{\nabla} \times \left(\tilde{V} \times \tilde{B}\right) + \frac{1}{S} \tilde{\nabla}^2 \tilde{B}$$

$$\frac{d(\tilde{P} \tilde{\rho}^{-\kappa})}{d\tilde{t}} = 0$$
Exercise: show that the (magnetic) Reynolds
number is actually τ_d / τ_c where τ_d is the diffusion
time scale, τ_c is the convection time scale

Incompressibility:

$$\nabla \times (\mathbf{V} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B}$$
$$\mathbf{B} \cdot \nabla \mathbf{V} - \mathbf{V} \cdot \nabla \mathbf{B} + \eta \nabla^2 \mathbf{B} = 0$$
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \approx \frac{\partial^2}{\partial y^2} \approx \frac{1}{a^2}$$
Along the central vertical line (x = 0) apply a similar analysis, we get:
$$V_y \sim \frac{\eta}{a} \qquad \text{Convection balances diffusion of } \mathbf{B}$$
Thus, we also have:
$$V_x \sim \frac{\eta L}{a^2} \sim V_A$$
Remind: $S = LV_A/\eta$
$$V_A$$
: Upstream Alfvén speed

 $\frac{a}{L} \sim S^{-1/2}$

Reconnection rate:

$$R = V_y B_x = V_x B_x \frac{a}{L} \propto S^{-1/2}$$

SLOW!

Are resistive current sheets stable?

- A current sheet has free energy...
- resistivity can help release the energy
- Sweet-Parker model is a *stable* way to convert magnetic energy to kinetic energy through diffusion (resistivity)
- However, *instability* also exists in a resistive current sheet *tearing mode instability* which can release energy faster!

(Furth et al., 1963, PhFI)

Linearize the MHD equation set

Background fields:

 $\rho = Const$ $P^{T} = Const$ $V \equiv 0$ $B = B_{x}(y) \hat{e}_{x} + B_{z}(y)\hat{e}_{z}$

1D configuration: infinite along x direction, the fields are functions of y only.

 $\boldsymbol{B} \cdot \nabla \boldsymbol{B} \equiv 0 \longrightarrow$ Momentum equation is satisfied

Faraday equation is not satisfied: $E = -V \times B + \eta J = \eta J$, thus we have: $\frac{\partial B}{\partial t} = \eta \nabla^2 B$

There is diffusion of the background magnetic field. But we only discuss the very small resistivity case, so the diffusion is slow compared with the tearing instability

First-order fields: $\rho_1 \equiv 0$ (assume incompressibility), p, u, b and we write any perturbation in the form

 $f(x, y, z, t) = f(y) \exp(ikx + \gamma t)$

This is equivalent to apply a Fourier transform in x and a Fourier (Laplace) transform in t to the linearized equation set

To eliminate the pressure term, take curl of the above equation ($\nabla \times \nabla p^T \equiv 0$)

$$\gamma \nabla \times \boldsymbol{u} = \nabla \times (\boldsymbol{B} \cdot \nabla \boldsymbol{b} + \boldsymbol{b} \cdot \nabla \boldsymbol{B})$$

Let
$$\frac{B}{\sqrt{\mu_0 \rho}} \to B$$

$\gamma \nabla \times \boldsymbol{u} = \nabla \times (\boldsymbol{B} \cdot \nabla \boldsymbol{b} + \boldsymbol{b} \cdot \nabla \boldsymbol{B})$

$$\boldsymbol{B} \cdot \nabla \boldsymbol{b} = ikB_{\chi}\boldsymbol{b} \qquad \boldsymbol{b} \cdot \nabla \boldsymbol{B} = b_{y}\frac{\partial \boldsymbol{B}}{\partial y}$$

 $=\frac{\partial f}{\partial v}$

Take the *z*-component of the equation:

$$\nabla \cdot \boldsymbol{b} = ikb_x + b'_y = 0 \longrightarrow b_x = \frac{i}{k}b'_y$$
$$\nabla \cdot \boldsymbol{u} = iku_x + u'_y = 0 \longrightarrow u_x = \frac{i}{k}u'_y$$
$$\boldsymbol{\downarrow}$$
$$\boldsymbol{\gamma}(u''_y - k^2u_y) = ik[B_x(b''_y - k^2b_y) - B''_xb_y]$$

This is an equation of u_y and b_y only

Faraday's equation

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{V} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{B}$$
$$\downarrow$$
$$\gamma \boldsymbol{b} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{b}$$

$$\nabla \times (\boldsymbol{u} \times \boldsymbol{B}) = \boldsymbol{B} \cdot \nabla \boldsymbol{u} - \boldsymbol{u} \cdot \nabla \boldsymbol{B}$$

$$(\nabla \cdot \boldsymbol{u} = \nabla \cdot \boldsymbol{B} = 0)$$

$$\boldsymbol{B} \cdot \nabla \boldsymbol{u} = ikB_{x}\boldsymbol{u} \qquad \boldsymbol{u} \cdot \nabla \boldsymbol{B} = u_{y}\frac{\partial \boldsymbol{B}}{\partial y}$$
$$\nabla^{2}\boldsymbol{b} = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)\boldsymbol{b} = \left(-k^{2} + \frac{\partial^{2}}{\partial y^{2}}\right)\boldsymbol{b}$$

Take the *y*-component of the equation:

$$\gamma b_y = ikB_x u_y + \eta (b_y^{\prime\prime} - k^2 b_y)$$

This is an equation of u_{γ} and b_{γ} only

$$\gamma \left(u_y^{\prime\prime} - k^2 u_y \right) = ik \left[B_x \left(b_y^{\prime\prime} - k^2 b_y \right) - B_x^{\prime\prime} b_y \right]$$
$$\gamma b_y = ik B_x u_y + \eta \left(b_y^{\prime\prime} - k^2 b_y \right)$$

Basic equation set for following analysis

For convenience, use u, b, B to replace u_y, b_y, B_x

- B_z does not enter the equation set: it does not affect the growth rate of 1D tearing at all!
 But it affects the functions b_z(y) and u_z(y). You can derive the equations for them as an exercise.
 - If $\mathbf{k} = k_x \hat{e}_x + k_z \hat{e}_z$, B_z will influence the growth rage (only slightly), see (Shi et al., 2020)
- The equation seems to be *complex* (both real and imaginary terms), but it's **NOT**!
 - Do the transform: $ib \rightarrow b$ the equation set will become the following:

$$\begin{aligned} \gamma(u^{\prime\prime} - k^2 u) &= k [B(b^{\prime\prime} - k^2 b) - B^{\prime\prime} b] \\ \gamma b &= -kBu + \eta(b^{\prime\prime} - k^2 b) \end{aligned}$$

There is no oscillation: tearing mode is purely growing/decaying mode

Parity of u and b

 $B = \tanh(y)$

1.00 0.75 0.50 0.25

> -0.25 -0.50 -0.75

> -1.00

$$\gamma(u'' - k^2 u) = k[B(b'' - k^2 b) - B''b]$$

$$\gamma b = -kBu + \eta(b'' - k^2 b)$$

B(y) is odd, B'(y) is even, B''(y) is odd

Note: odd function × odd function → even function odd function × even function → odd function Theoretically, there are two possibilities: (1) u is even, b is odd This is not desirable: $b_y(0) \equiv 0$, no reconnection, wavy current sheet (2) u is odd, b is even $u_y(0) \equiv 0, b_y(0) \neq 0$. This is reconnection.

The Boundary Layer Problem

Consider
$$\eta \to 0$$

 $\gamma(u'' - k^2 u) = k[B(b'' - k^2 b) - B''b]$
 $\gamma b = -kBu + \eta(b'' - k^2 b)$

The highest-order derivative term is multiplied by a very small coefficient: *boundary layer problem*

- The η term is important only in a very thin layer $|y| \leq \delta$.
- + δ is an unknown quantity depending on $\eta \& k$

Generally, to solve the boundary layer problem:

- We first consider the **outer region** where $|y| \gg \delta$.
- Then we consider the **inner region** where $|y| \leq \delta$.
- Then we match the two solutions at $|y| \sim \delta$ (as the solution must converge here)

$$\begin{aligned} \gamma(u^{\prime\prime} - k^2 u) &= k [B(b^{\prime\prime} - k^2 b) - B^{\prime\prime} b] \\ \gamma b &= -kBu + \eta(b^{\prime\prime} - k^2 b) \end{aligned}$$

Outer region $|y| \gg \delta$

Here, the resistive term $(\eta(b'' - k^2b))$ is negligible

The 2nd equation gives $u = -\frac{\gamma}{kB}b$

Then plug it into the first equation, we get an equation

$$b'' - k^2 b - \frac{B''}{B} b + O(\gamma^2) = 0$$

 $O(\gamma^2)$ are terms proportional to γ^2 which can be neglected in the limit $\eta \to 0$, because γ should naturally be zero if there is no resistivity (tearing mode is resistive instability!) So, we are left with the equation (which is just the r.h.s. of the first equation):

$$b^{\prime\prime} - k^2 b - \frac{B^{\prime\prime}}{B} b = 0$$

Fortunately, this equation has analytic solution:

$$b = \begin{cases} e^{-ky} \left(1 + \frac{1}{ka} \tanh\left(\frac{y}{a}\right) \right), y \ge 0 \\ e^{ky} \left(1 - \frac{1}{ka} \tanh\left(\frac{y}{a}\right) \right), y \le 0 \end{cases}$$

Note: we have imposed the requirement: $b(y = \pm \infty) = 0$ Otherwise, both the two branches are exact solutions on $y \in (-\infty, +\infty)$

$$b = \begin{cases} e^{-ky} \left(1 + \frac{1}{ka} \tanh\left(\frac{y}{a}\right) \right), y \ge 0 \\ e^{ky} \left(1 - \frac{1}{ka} \tanh\left(\frac{y}{a}\right) \right), y \le 0 \end{cases}$$

Far from the center of the current sheet, both b and u decay exponentially ($\propto \exp(-ky)$)

As
$$y \rightarrow 0$$
, b' is discontinuous, i.e.
 $b'(y = 0^+) \neq b'(y = 0^-)$
as $b'(y = 0^+) = -b'(y = 0^-)$. Thus, to ensure $b''(y = 0$
is finite, we need $b'(y = 0^+) = b'(y = 0^-) = 0$

Let's define a useful quantity derived from the *outer solutio*

$$\Delta = a \frac{b'(0^+) - b'(0^-)}{b(0)} = \frac{2(1 - k^2 a^2)}{ka}$$

Then, we need to analyze the inner layer $|y|\lesssim \delta$

$$\begin{aligned} \gamma(u^{\prime\prime} - k^2 u) &= k [B(b^{\prime\prime} - k^2 b) - B^{\prime\prime} b] \\ \gamma b &= -kBu + \eta(b^{\prime\prime} - k^2 b) \end{aligned}$$

Inner region $|y| \leq \delta$

We are very close to y = 0. Let's do some comparisons.

$$B = B_0 \tanh(\frac{y}{a}), \quad B'' = -\frac{2B_0}{a^2} \tanh\left(\frac{y}{a}\right) \operatorname{sech}^2\left(\frac{y}{a}\right)$$

At $y \to 0$, we have: $\frac{B''b}{Bb''} = -2\operatorname{sech}^2\left(\frac{y}{a}\right)\frac{b}{a^2b''} \sim \frac{b}{a^2b''} \ll 1$ $b'' \propto (\frac{1}{a\delta} \operatorname{or} \frac{1}{\delta^2}) \gg \frac{1}{a^2}$

Because the layer is very thin so b&u change very fast

Similarly, we expect
$$\frac{k^2 u}{u^{\prime\prime}} \ll 1$$
, $\frac{k^2 b}{b^{\prime\prime}} \ll 1$

$$\begin{array}{c} \gamma(u'' - k^2 u) = k[B(b'' - k^2 b) - B'' b] \\ \gamma b = -kBu + \eta(b'' - k^2 b) \end{array}$$

Inside the inner layer, we have:

$$\begin{array}{l} \gamma u^{\prime\prime} \sim kBb^{\prime\prime} \\ \gamma b \sim -kBu \sim \eta b^{\prime\prime} \end{array}$$

From now on, we are considering all the fields at a location $y = \varepsilon \delta$ with $\varepsilon \leq 1$. For convenience, we throw away ε and write $y = \delta$.

Hint: Taylor expansion: $u(0) = u(\delta) + \cdots$ First, we have $B(\delta) \approx B'(0)\delta$. Second, as u is an odd function (u(0) = 0), we have: $u''(\delta) \approx -\frac{u(\delta)}{\delta^2}$. Last, **estimate of** b'' should be made with caution, as b is an even function. Taylor expansion:

$$b'(0) = b'(\delta) - \delta \times b''(\delta) + O(\delta^2)$$

Note that b'(0) = 0, we have:

$$b''(\delta) \sim \frac{b'(\delta)}{\delta}$$

Recall the definition: $\Delta = a \frac{b'(0^+) - b'(0^-)}{b(0)} = \frac{2(1-k^2a^2)}{ka}$.
Note that 0^{\pm} refers to $\pm \delta$ here because this is from the outer solution.

We can write $b'(\delta) \approx \Delta b(0)/a$ and then: $b''(\delta) \sim \frac{\Delta b(0)}{a\delta} \approx \frac{\Delta b(\delta)}{a\delta}$ as $b(\delta) = b(0) + O(\delta^2) \approx b(0)$

2.5 a = 0.5a = 0.8a = 1.02.0 1.5 by 1.0 0.5 0.0 -2 vla ψ is the magnetic flux function such that $\nabla \times (\psi \hat{e}_z) = \boldsymbol{b}$ and thus $\psi = \frac{ib_y}{k} \propto b$

Note: for now we are assuming $ka \gg \frac{\delta}{a}$, i.e., the wave length is not too long (or k is not too small) so that Δ is a finite value and $b'' \propto \delta^{-1}$. This is the traditionally-called *constant-* ψ regime.

However, as ka becomes smaller, b becomes steeper (see the figure above). When $ka \leq \frac{\delta}{a} \ll 1$, we find that $\Delta \approx \frac{2a}{\delta}$ and thus $b'' \propto \delta^{-2}$, similar to u. This is the so-called **non-constant-** ψ regime. Because ψ , or b, is very steep

Then we can combine the three relations to eliminate u, b and δ and get: $\gamma^5 \sim (kB')^2 \Delta^4 \eta^3 / a^4$

 \overline{B} is the upstream Alfvén speed $\tau_a = a/\overline{B}$: Alfvén crossing time

As we see previously, Δ should be positive in order to have a growing mode, i.e., the wave length must be longer than a

ka < 1

Then one can easily show that $(1 - k^2 a^2)^{\frac{4}{5}} (ka)^{-\frac{2}{5}}$ is a **decreasing** function of k for 0 < ka < 1.

Especially, when $\delta/a \ll ka \ll 1$, we have $\gamma \propto (ka)^{-\frac{2}{5}}S^{-\frac{3}{5}}$

non-constant- ψ regime $(ka \leq \frac{\delta}{a})$

Balance relations:

$$\gamma u'' \sim kBb''$$
$$\gamma b \sim -kBu \sim \eta b''$$

Now we have: $u^{\prime\prime} \sim -u/\delta^2$, $B \sim B^{\prime}\delta$, $b^{\prime\prime} \sim b/\delta^2$

From $\gamma b \sim \eta b''$ we get (use the above estimate of b''): $\gamma \sim \frac{\eta}{\delta^2}$ Then, from $\gamma u'' \sim kBb''$ we get $\gamma u \sim -kB'\delta b$

In addition, we have the relation $\gamma b \sim -kBu$, which gives $\gamma b \sim -kB' \delta u$

Then we can combine the three relations to eliminate u, b and δ and get: $\gamma^3 \sim (kB')^2 \eta$

 $S = \frac{a\overline{B}}{\eta}$

 \overline{B} is the upstream Alfvén speed $\tau_a = a/\overline{B}$: Alfvén crossing time

In contrast to the constant- ψ regime, now γ is an **increasing** function of k

	constant- ψ	non-constant- $oldsymbol{\psi}$
k range	$\delta/a \ll ka < 1$	$ka \lesssim \delta/a$
γ ~	$(1-k^2a^2)^{\frac{4}{5}}(ka)^{-\frac{2}{5}}S^{-\frac{3}{5}}$	$(ka)^{\frac{2}{3}}S^{-1/3}$
γ and k	Decreasing with k	Increasing with k

Apparently, there is a critical point around $ka \sim \delta/a$ that separates the two regimes. And this critical point corresponds to the **peak** of the $\gamma(k)$ curve. Around the critical point (i.e. $ka \sim \delta/a$), we have $\gamma \tau_a \sim (ka)^{-\frac{2}{5}}S^{-\frac{3}{5}}$ for constant- ψ regime (large-k branch), and $\gamma \tau_a \sim (ka)^{\frac{2}{3}}S^{-\frac{1}{3}}$ for non-constant- ψ regime (small-k branch).

Thus, to match the two solutions, we have:

$$(k_m a)^{-\frac{2}{5}}S^{-\frac{3}{5}} \sim (k_m a)^{\frac{2}{3}}S^{-\frac{1}{3}}$$

which gives

$$k_m a \sim S^{-\frac{1}{4}}$$

 k_m is the wavenumber corresponding to the maximum growth rate

$$k_m a \sim S^{-\frac{1}{4}}$$

Then we plug k_m into the expression for γ to get the maximum γ : $\gamma_m \tau_a \sim S^{-\frac{1}{2}}$

One can test using either $\gamma \sim \frac{\eta \Delta}{a\delta}$ or $\gamma \sim \frac{\eta}{\delta^2}$ (the balance relations $\gamma b \sim \eta b''$ for the two regimes) that at this point, there is $\frac{\delta_m}{a} \sim S^{-1/4}$

consistent with the assumption $k_m a \sim \delta_m / a$

To conclude this part

- The linear tearing instability requires ka < 1
- The $\gamma(k)$ curve consists of two parts
 - The large-k, or constant- ψ , regime where γ decreases with k
 - The small-k, or non-constant- ψ , regime where γ increases with k
- Most importantly, the intersection of the two regimes is the fastest-growing mode, which has the following scaling relations:

Tearing Mode Instability, Chen Shi 时辰

Numerically solved eigen-functions

Example of a numerically-solved u&b

$$\gamma(u'' - k^2 u) = k[B(b'' - k^2 b) - B''b]$$

$$\gamma b = -kBu + \eta(b'' - k^2 b)$$

The equation set that we are solving is a **boundary-value problem**, i.e. an ODE set with boundary condition $(u, b)|_{y=\pm\infty} = 0$ and an undetermined **eigenvalue** γ . This kind of problem can be solved numerically with existing packages (e.g. SciPy solve_bvp)

In practice, we impose the boundary condition $(u,b) \propto e^{-k|y|}$ at two boundaries far from the center of the current sheet (because we cannot impose boundary conditions at infinity numerically).

Nonlinear stage of tearing mode -- Plasmoid

$$\lambda_m = \frac{2\pi}{k_m} = 2\pi a S^{1/4}$$

Q: how to estimate the width of the plasmoid? A: $w \cong 4\sqrt{\psi/\psi_0''}$ (Biksamp 2005 Eq (4.5))

(Bhattacharjee et al, 2009)

The tearing instability seems to be slow...

Even the fastest growing mode has a *negative* scaling relation with $S: \gamma_m \tau_a \sim S^{-\frac{1}{2}}$. This means that, the larger *S*, or the smaller η , leads to a smaller $(\gamma_m \tau_a)$. And $S \to \infty$ gives $(\gamma_m \tau_a) \to 0$.

This is true. But, we should notice that, so far, we are only discussing the *one-dimensional* current sheet, i.e. the current sheet is infinite along x direction, and we normalize everything to the thickness of the current sheet a. However, the current sheet must have a finite length L, for example, the Sweet-Parker current sheet.

Aspect ratio and the growth rate

Recall: in Sweet-Parker current sheet model, the Lundquist number is defined as

 $S_L = \frac{LV_A}{C}$

 $S = \frac{aV_A}{\eta}$

instead of

For a 2D current sheet, as its thickness is usually dynamically evolving, we should use its length to measure the time scales (convection, diffusion etc.)

Let's renormalize everything by L instead of a. We have

$$\tau_L = \frac{L}{V_A} = \tau_a \times \frac{L}{a}$$
$$S_L = S_a \times \frac{L}{a}$$

Aspect ratio is important!

Recall: Sweet-Parker current sheet has aspect ratio

$$\frac{a}{L} \sim S_L^{-\frac{1}{2}}$$

This gives

 $(\gamma_m \tau_L)_{SP} \sim S_r^{\frac{1}{4}}$

Tearing Mode Instability, Chen Shi 时辰

(Loureiro et al., 2007) (Tajima & Shibata, 2003)

Positive scaling with S_L : $\gamma_m \tau_L \to \infty$ as $S_L \to \infty$ For Sweet-Parker current sheet ($\frac{a}{L} \sim S_L^{-1/2}$), the linear growth rate of tearing instability is fast:

$$(\gamma_m \tau_L)_{SP} \sim S_L^{\frac{1}{4}}$$

which means $\gamma_m \tau_L \to \infty$ as $S_L \to \infty$.

(Bhattacharjee et al, 2009)

In practice, the tearing mode cannot grow indefinitely because the growth will saturate when the amplitude is too large, i.e. the mode enters nonlinear stage.

"ideal" tearing mode

$$\gamma_m \tau_L \sim S_L^{-\frac{1}{2}} \times \left(\frac{a}{L}\right)^{-\frac{3}{2}}$$

If we consider a "collapsing" current sheet, i.e. a thinning current sheet, whose aspect ratio a/L is decreasing. Write

]

$$\frac{a}{L} \sim S_L^{-\alpha}$$

we get

$$\gamma_m \tau_L \sim S_L^{-(1-3\alpha)/2}$$

 Consider the case when $S_L \rightarrow \infty$:

 If $\alpha > \frac{1}{3}$ (current sheet too thin): positive scaling with S_L , the growth rate diverges to infinity.

 If $\alpha < \frac{1}{3}$ (current sheet too thick): negative scaling with S_L , the growth rate goes to zero.

 If $\alpha = \frac{1}{3}$: finite growth rate $\gamma_m \tau_L \sim O(1)$ independent of S_L

 If $\alpha = \frac{1}{3}$: finite growth rate $\gamma_m \tau_L \sim O(1)$ independent of S_L

 Thick current sheet is extremely stable

 "ideal" tearing mode

 Tearing Mode Instability, Chen Shi \mathbb{N}

Teaning Mode instability, Chen Shi 的 灰

 $\gamma_m \tau_L \sim S_L^{-(1-3\alpha)/2}$

If $\alpha = \frac{1}{3}$: finite growth rate $\gamma_m \tau_L \sim O(1)$, independent of S_L "ideal" tearing mode

(Pucci et al, 2014)

Tearing Mode Instability, Chen Shi 时辰

Recursive reconnection process

An initially thick current sheet with $\frac{a}{L} > S_L^{-1/3}$: this current sheet is very stable.

Due to some mechanism, the current sheet thins, and eventually thins to $\frac{a}{L} \sim S_L^{-1/3}$.

Then the tearing instability grows, leading to formation of plasmoid chain

The X-points between plasmoids dynamically lengthen (nonlinear process) and become the secondary current sheets

The secondary current sheets approach the critical aspect ratio $(\frac{a}{L} \sim S_L^{-1/3})$

Secondary current sheets become tearing unstable and new plasmoids form

Generates a power spectrum: $P(B_y) \propto k_x^{-5}$ (Tenerani and Velli, 2019) Tearing Mode Instability, Chen Shi 时辰

Other effects – viscosity

$$\gamma_m \tau_a \sim S^{-\frac{1}{2}} P^{-\frac{1}{4}}$$

See also (Loureiro et al, 2013)

Viscosity suppresses the tearing mode

Other effects – background flow

- A Sweet-Parker type background flow (inflow+outflow):
- 1. Decreases the growth rate

2. Leads to a linear "saturation" due to the stretch of the magnetic island by flows

Other effects – Hall effect

$$\gamma_m \tau_a \sim S^{-\frac{1}{2}} (1 + C P_h^{\zeta})$$

Hall effect increases the linear growth rate of tearing mode.

Tearing mode in 3D – guide field

Small k_x regime: γ always decrease with k_z , i.e. a wave vector component along the guide field slows down the growth.

But overall, the fastest growing mode is always the $k_z = 0$ mode, which is not affected by guide field at all.

Large k_{χ} (constant- ψ) regime: guide field can rise γ a little bit with finite k_z .

Tearing Mode Instability, Chen Shi 时辰

(Shi et al, 2020)

Summary

- A resistive current sheet is subject to tearing mode instability
- The instability requires long wavelength: ka < 1
- Linear growth rate $\gamma(k)$ is a non-monotonic function:
 - 1. For large $k, \frac{d\gamma}{dk} < 0$, for small $k, \frac{d\gamma}{dk} > 0$
 - 2. The largest growth rate is located at $k_m a \sim S^{-1/4}$ and has a value $\gamma_m \tau_a \sim S^{-1/2}$
- Nonlinearly, the tearing instability leads to the formation of a chain of plasmoids whose length corresponds to k_m
- In a thinning current sheet, the growth rate transits from extremely slow to extremely fast when $\frac{a}{L} \sim S_L^{-1/3}$