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Magnetic reconnection—exp/osive energy release

CME and solar flare
substorm

Particle
|~ transport

Eastwood et al., 2017

IOHXR Observational Targets ribbons
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Steadily-reconnecting current sheet

Leftward magnetic field

Ambient plasma moves inward
/ Heated plasma
\ /ejected outward
L 2

Heated plasma :f;'; R
ejected outward — Ampient plasma _——— ic fi
: ~—— moves inward \ Magnetic field
——— ——topology changes,

—— plasma heated

Rightward magnetic field — and accelerated

Hesse and Cassak, 2019

What triggers the fast magnetic reconnection? | — at MHD scales...
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Onset of reconnection
Ideal MHD does not allow “reconnection” of field lines

* Need to break the “frozen-in" condition
e Generalized Ohm’s law:

+]><B_V-Pe m, 9]

E+uxB=n] +
ne ne ne? ot
resistivity  Hall Electron Electron
pressure inertia

Resistivity can be induced by collisions or wave-particle interactions



Normalization of (viscous-resistive)-MHD equations

dp
—+V-(pV) =0
” (pV)
ov
p(E+V-VV)=—VP +J X B +vpV?V — orv-(vpwv)

0B
— =Vx(VxB)+nV°B

o d(Pp™) _ 0 \

dt

Here we have neglected p,

MHD equation, like the Navier-Stokes equation, can be non-dimensionalized.



Choose a set of reference values: (p, B, L) They are arbitrary

From the three values, we can further define reference speed and time:

_ B

V= =
Hop

T=L/V

and pressure:

We can then normalize all the fields to the above values, e.g.,
p=ppV=VV
Here the “~" values are normalized fields.



Note that the derivatives also need to be normalized:

0 _10 1.
ot tot’ L
The MHD equation set becomes: 7
6,0 Reynolds number R = —
— +V-(pV) =0 /
W -\ s - = [T
il=+V-VW)=-VP +] x B +-{pV2¥V
ot R
oB - . . [l -
— =V x (V x B) +|=|V°B
gt =V * WX B) Hg
d(Pp~*) )

, , dt Lundquist number S = Lv
Exercise: show that the (magnetic) Reynolds U
number is actually 7,;/7. where 7, is the diffusion /
time scale, 7, is the convection time scale a.k.a. magnetic Reynolds number

Tearing Mode Instability, Chen Shi B fx



Sweet—Parker mOdeI Jietal, 1999
u o

| / |
1 l ”s
— a1 — A 5
B« | | /A

Sweet-Parker current sheet B a’L“‘f-

PT = Coristant Vi _ B«By |, These quantities are
V-VW=—RB.VB a UgplL averaged values
HoP \ Ve _ By By
Along the central vertical line (x = 0): Along the central horizontal line (y = 0): L popa

Ve =B, =0,V, #0,B, % 0:

av 1 0B
= B

0y  pop * Ox
x direction is exactly O (ai = 0)

V, =B, =0,V #0,B, % 0:
oV 1 _ 4B

% V B
*0x  pop ° dy

y

L dB
y direction is exactly O (a Y = O)
o V. 1 0B
- o, 1 2B, x direction: V; a; = > 2
y direction: V, —— = — B, — HopP Y
dy Hop ox Tearing Mode Instability, Chen Shi B fix




Incompressibility:

V- V=20
av, JdV,
“+—2=0
dx dy
V. W
X2 V2  ByBy
L a =
L uopa
Similarly:
V-B=0
B, B, V2 B}
X Y 12 X
L a HoP
2
Vyz — BxBy VZ B_y
a__ popl Y WP

VX(VXB)=B-VV—-V-VB

B-VW—-V-VB+nV?’B=0

ik 92 92 1

V2= ~ ~
0x2+6y2 dy? a?

Along the central vertical line (x = 0)
apply a similar analysis, we get:

n

V.~ Convection
Y o a ™~ balances

Thus, we also have: diffusion of B

Remind: S = LV, /n
V4: Upstream Alfvén speed
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R

a
— ~ S§71/2
L

Reconnection rate:

a
= VyBy = VyBy 7 §1/2

SLOW!



Are resistive current sheets stable?

* A current sheet has free energy...
* resistivity can help release the energy

* Sweet-Parker model is a stable way to convert magnetic energy to
Kinetic energy through diffusion (resistivity)

* However, instability also exists in a resistive current sheet—
tearing mode instability which can release energy faster!

(Furth et al., 1963, PhFl)



Linearize the MHD equation set
Background fields:

p = Const
PT = Const
V=0

B = By(y) éx + B,(y)é,
1D configuration: infinite along x direction, the fields are functions of y only.

B-VB=0 —— Momentum equation is satisfied

Faraday equation is not satisfied: E = —V X B + nJ = nJ, thus we have:

BB_ v2p
ot |

There is diffusion of the background magnetic field. But we only discuss the very
small resistivity case, so the diffusion is slow compared with the tearing instability



First-order fields: p; = 0 (assume incompressibility), p, u, b and we write any
perturbation in the form

f(x,y,2,t) = f(y) exp(ikx + yt)
This is equivalent to apply a Fourier transform in x and a Fourier (Laplace)
transform in t to the linearized equation set

Momentum equation:

aV—I— V-VV =-V P+B2 -|-1B VB

l l / l Iio\

pyu 0 p B-b B-Vb+b-VB

Ho Ho
B2=(B+b)-(B+b)=B*+CB-b+ b?

1st order

To eliminate the pressure term, take curl of the above equation (V X Vp! = 0)

Vxu=Vx(B-Vb+b-VB B
Y ( ) et =~ B




yVXxu=Vx(B-Vb+b-VB)

OB
B-Vb=ikBb b-VB=bh,—

y
Take the z-component of the equation: _ay
. r __ L !
V-b=ikb,+b,=0—p, ZEby
. I __ i !
Veu=ikue+u,=0—q, = Uy

l

y(uy — k*w,) = ik|By(by — k?b,) — By'b, ]

This is an equation of u,, and b,, only
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Faraday’'s equation

0B
Esz(VxB)+nV2B

yb =V X (u X B) +nV?b

VX(uxB)=B-Vu—u-VB (V-u=V-B=0)

B-Vu=ikB,u u-VB=u,—

VZb = 02+02 b = k2+a2 b
- \ox2 ay?) dy?

Take the y-component of the equation:

yb, = ikB,u, +n(bl — k*b,)

This is an equation of u,, and b,, only



y(uﬁ,' - kzuy) = ik[Bx(bslfl - kzby) - Ba’c’by]
yb, = ikB,u, + n(bj’,’ — kzby)

Basic equation set for following analysis

For convenience, use u, b, B to replace Uy, by, B,

® B, does not enter the equation set: it does not affect the growth rate of 1D tearing at all!
B But it affects the functions b,(y) and u,(y). You can derive the equations for them as an exercise.
B Ifk=k,é +k,é, B, will influence the growth rage (only slightly), see (Shi et al., 2020)

® The equation seems to be compl/ex (both real and imaginary terms), but it's NOT!
B Do the transform: ib — b the equation set will become the following:

There is no
relv real . y(u” o kzu) — k[B(b” — kzb) — B”b] oscillation: tearing
ey 152 vb = —kBu + n(b" — k*b) mode is purely
growing/decaying

mode



Parity of u and b

y(uw' — k?u) = k[B(b" — k2b) — B"'b]
vb = —kBu +n(b" — k2b)

B = tanh(y)

B(y) is odd, B'(y) is even, B”(y) is odd

Note: odd function X odd function — even function
odd function X even function —» odd function

Theoretically, there are two possibilities:
(1) u is even, b is odd
This is not desirable: b, (0) = 0, no reconnection, wavy current sheet

(2) u is odd, b is even
u,(0) = 0,b,(0) # 0. This is reconnection.



The Boundary Layer Problem

y(u'" — k?u) = k[B(b" — k?b) — B"'b]

Consid 0
onsider n — vb = —kBu {n(b" — k?b) |

The highest-order derivative term is multiplied by a very small coefficient:
boundary layer problem

* The n term is important only in a very thin layer |y| < 6.
* 0 is an unknown quantity depending on n & k

Generally, to solve the boundary layer problem:

» We first consider the outer region where |y| > §.

* Then we consider the inner region where |y| < 6.

* Then we match the two solutions at |y| ~ § (as the solution must converge here)



y(u" — k?u) = k[B(b" — k2b) — B"'b)]
vb = —kBu + n(b" — k*b)

Outer region |y| > §
Here, the resistive term (n(b"’ — k?b)) is negligible

The 2" equation gives

14
u=-——b
kB

Then plug it into the first equation, we get an equation

17

//_Z_B_ 2:
b" — kb ——b +0(y?) =0

O(y?) are terms proportional to ¥y which can be neglected in the limit n — 0, because y
should naturally be zero if there is no resistivity (tearing mode is resistive instability!)
So, we are left with the equation (which is just the r.h.s. of the first equation):

17

b" —k?b ——b =0
B




1

//_2__:
b k<b BbO

Consider the Harris-type current sheet

B(y) = B, tanh (g) a: current sheet thickness
l Note: a # 6!

%” = k% — %sech2 (g)

Fortunately, this equation has analytic solution:

.
o—kY (1 n itanh (X)) Y= 0 Note: we have imposed the requirement:
b= ka a b(y =40) =0
kv (1 1 h y < 0 Otherwise, both the two branches are
\ € - Etan (E) V= exact solutions on y € (—o0, +0)



( 1
y
—ky — Z e
e <1 + katanh (a)> ,y=0 .

k eky <1 — k—latanh (§)> y<0 12

Far from the center of the current sheet, both b and u
decay exponentially (< exp(—ky))

0.6 1

0.4 1

As y — 0, b’ is discontinuous, i.e. 02
b'(y = 0%) # b'(y = 0°) e N B

as b'(y =0") = —b'(y = 07). Thus, to ensure b"' (y = 0)

is finite, we need b'(y =0") =b'(y=0") =0 25 St

— ka=0.8
— ka=1.0

2.0 1

Let's define a useful quantity derived from the outer solution:.

1.5

Lo DO b0 231 - k?a?) &
RO
Then, we need to analyze the inner layer |y| < §

Tearing Mode Instability, Chen Shi B} fx yla



y(u'" — k?u) = k[B(b" — k?b) — B"'b]
vb = —kBu + n(b" — k*b)

Inner region |y| < 6

We are very close to y = 0. Let's do some comparisons.

B = Botanh(z), B =—22 tanh( )SeChz (%)

II 1 1
At y — 0, we have: bb——Zsechz(Z) b__| 2 K 1| b" (= or )>>;

a?b’’ a’b'’ ad

Because the layer is very thin so b&u change very fast

2 k2

Similarly,




v k?uw) =|k[B(b"|— k2b) — B"b]
vb :[—kBu]-|—|77(b” — k?b)

Inside the inner layer, we have:

yull ~ kaII
yb ~ —kBu ~ nb"

From now on, we are considering all the fields at a location y = €6 with ¢ < 1.
For convenience, we throw away ¢ and write y = 6.

Hint: Taylor expansion: u(0) = u(6) + -

First, we have B(6) = B'(0)§.
Second, as u is an odd function (1 (0) = 0), we have: u"'(§) =~ — u;;s).
Last, estimate of b’ should be made with caution, as b is an even function.

Tearing Mode Instability, Chen Shi B fx



Taylor expansion: —
b'(0) =b'(6) =6 X b"(8) + 0(6%) ** S
Note that b'(0) = 0, we have: . —
b”(6) b’(a) |
6 1.5
I'(aHY_n!n— 2.2 )
Recall the definition: A = g 20)=P'©@D _ 2(1-k*a?®) _
b(0) ka 1.0
Note that 0% refers to +8 here because this is from the outer
solution. .
We can write b'(6) = Ab(0)/a and then: e 5 ; ; ;
yla
b"(8) ~ Ab(0) . Ab(9) Y is the magnetic flux function
ad ad such that v x (Pé,) = b and

as b(6) = b(0) + 0(6%) =~ b(0) thus ¥ = =2 o b

Note: for now we are assuming ka >> —, i.e., the wave length is not too long (or k is not too small) so

that A is a finite value and b’ « §71. Th|s is the traditionally-called constant-p regime.
Because Y, or b, is smooth

. o .
However, as ka becomes smaller, b becomes steeper (see the figure above). When ka < - < 1, we find

that A ~ 22 and thus b” « 62, similar to w. This is the so-called non-constant4 regime.

o)
Tearing Mode Instability, Chen Shi B fix Because l/), or b’ IS very Steep



. 5
constant-y regime (ka > Z)

Balance relations: yu" ~ kBb"
yb ~ —kBu ~ nb"

Now we have: u”’ ~ —u/§%, B ~ B'8, b’ ~ Ab/(ad)

From yb ~ nb" we get (use the above estimate of b"'):

nA We see A must be
T as positive if we want y
Then, from yu'' ~ kBb"" we get to be real (instability)
yu ~ —kB'A8%b/a |
\ , (kB’)ZSSA
In addition, we have the relation yb ~ —kBu W 14 a
vb ~ —kB'éu

Then we can combine the three relations to eliminate u, b and 6 and get:
y® ~ (kB')2A'n* /a*



N (kB’)2A4773 A 2(1 _ kZaZ)

Y a* ka
l aB
S =—
z n
aB’ 5 4 2 3 — )
vTa ~|—=| (1 —k?a?)5(ka) 555 B is the upstream Alfvén speed
b 1, = a/B: Alfvén crossing time

As we see previously, A should be positive in order to have a growing mode, i.e.,

the wave length must be longer than a
ka <1

4 2
Then one can easily show that (1 — k“a“)s(ka) s is a decreasing function of k

for 0 < ka < 1.

2 3

Especially, when § /a < ka < 1, we have y « (ka) 5S 5



non-constant-y regime (ka < )

Balance relations: yu'' ~ kBb"
vb ~ —kBu ~ nb"
Now we have: u"’ ~ —u/§% B ~ B'S, b"' ~ b/6?

From yb ~ nb"" we get (use the above estimate of b"'):
n

52

Then, from yu"’ ~ kBb"" we get

yu ~ —kB'Sb

In addition, we have the relation yb ~ —kBu, which gives
vb ~ —kB'éu

Then we can combine the three relations to eliminate u, b and § and get:
> ~ (kB")*n



)/3 ~ (kB,)ZU S = @

N
l B is the upstream Alfvén speed
7, = a/B: Alfvén crossing time

| DN

aB'\3 2
YTa ~ <?> (ka)3s~1/3

In contrast to the constant-iy) regime, now Y is an increasing function of k

| constant- | non-constant-i _

k range 0/a K ka<l1 ka < 6/a
y ~ 4 _2 3 2
(1 — k?a®)s(ka) 5575 (ka)3S~1/3
Yy and k Decreasing with k Increasing with k

Apparently, there is a critical point around ka ~ §/a that separates the two regimes.
And this critical point corresponds to the peak of the y (k) curve.

Tearing Mode Instability, Chen Shi B fx



Around the critical point (i.e. ka ~ §/a), we have
3

2
yt, ~ (ka) 55 5

for constant-y regime (large-k branch), and
1

2
YTq ~ (ka)3S 3
for non-constant-y regime (small-k branch).

Thus, to match the two solutions, we have:
2 3 2 1

(k,,a) 55 5 ~ (k,,a)3S 3

which gives
1

k,,a~S 4
k., is the wavenumber corresponding to the maximum growth rate



1

kn,a~S 4

Then we plug k,,, into the expression for y to get the maximum y:
1

YmTa ~ S 2

: : A :
One can test using either y ~ Z—S ory ~ % (the balance relations yb ~ nb"’ for

the two regimes) that at this point, there is
)

_m _g-1/4
a
consistent with the assumption k,,a ~ 6,,,/a



To conclude this part

* The linear tearing instability requires ka < 1

* The y(k) curve consists of two parts

* The large-k, or constant-i, regime where y decreases with k
* The small-k, or non-constant-iy), regime where y increases with k

* Most importantly, the intersection of the two regimes is the
fastest-growing mode, which has the following scaling relations:

1
* Opfa~S ¢ Ymr
1
° ymTa ~ S 2 0.005
1

+ kpa ~ S

0.004 4

constant-y

/

YTa

0.003 4

0.002 4
0.001 -

Numerica”y solved ]/(k) curve for S = 104 0.0 k., 0.2 0.4 B 0.6 0.8 1.0

non-constant-y
|




Numerically solved eigen-functions

. y(u'" — k*u) = k[B(b"' — k?b) — B"b]
S =10* ka = 0.3
- vb = —kBu + n(b" — k*b)

0.04 1

0021 «— Inner layer The equation set that we are solving is a

o0 boundary-value problem, i.e. an ODE set with
e boundary condition (4, b)|,-1. = 0 and an
undetermined ejgenvalue y. This kind of

. problem can be solved numerically with
- 03- existing packages (e.g. SciPy solve_bvp)

0

—0.04 ~

0.5 4

0.2

0.1 4

. In practice, we impose the boundary condition
- 6 4 -2 ;{ 2+ o s (u,b) x e kI at two boundaries far from the
center of the current sheet (because we cannot

Example of a numerically-solved u&b . - g s
P Y impose boundary conditions at infinity
numerically).




Nonlinear stage of tearing mode -- Plasmoid

0025 S e ——

Q: how to estimate the width of the plasmoid?

A:w = 4./ /1Py (Biksamp 2005 Eq (4.5))
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(Bhattacharjee et al, 2009)



The tearing instability seems to be slow...

Even the fastest growing mode has a negative scaling relation with
1

S: YmTa ~ S 2. This means that, the larger S, or the smaller 7, leads
to a smaller (y,,7,). And S — oo gives (y,,7,) — O.

This is true. But, we should notice that, so far, we are only
discussing the one-dimensional current sheet, i.e. the current sheet
Is infinite along x direction, and we normalize everything to the
thickness of the current sheet a. However, the current sheet must
have a finite length L, for example, the Sweet-Parker current sheet.



Aspect ratio and the growth rate

Recall: in Sweet-Parker current sheet model, the Lundquist number is defined as

LV
SL — _A
n
instead of
al/
s=—=
n

For a 2D current sheet, as its thickness is usually dynamically evolving, we should
use its length to measure the time scales (convection, diffusion etc.)

Let’'s renormalize everything by L instead of a. We have

_L_ L

TL—VA—Ta q
L

SL=SaX_

a



Exercise: show the
wavenumber of the
maximum growing

mode is
3

kL ~ S8
for Sweet-Parker CS

Recall: Sweet-Parker current sheet has aspect ratio

This gives

1
YmTa ~ S 2

!

a —=

5 a

L

!

L

%

1

YmTL ~ SL_E X (%)

3

2

Aspect ratio is important!

a

— N

L

1

2
SL

(YmTL)sp ~ SE

1

(Loureiro et al., 2007)
(Tajima & Shibata, 2003)

Positive scaling with S; :
/ YT, = % as §; — oo



For Sweet-Parker current sheet (% ~S, 1/ 2), the linear growth rate of tearing

instability is fast:

1
(YmTL)sp ~ Sf

which means y,,,7;, > © as §; — .

In practice, the tearing mode cannot grow indefinitely because the growth will
saturate when the amplitude is too large, i.e. the mode enters nonlinear stage.

(a) S, =6.28e5, t= 3.00,J 54e+03, 8.06+00]

y
6.00,J, [-1.206+04, 4.940403]
— = e — G — < Y=
— = 50
0,4, [-9.590+03, 3.71e+03]
il N = 5
7
J, [-9.11e+03, 4.700+03]

(Bhattacharjee et al, 2009)

. Reconnected flux . Reconnection rate
o SL:3.14|e4 ‘ 10 ‘
- - _SL:2.51E5
107 ___s,=6.28e5
= °l < \¥
%“ E -2 \\\I\ I E
% ° g o S—wz\\\\ IIII 1
¥ ol =) L S
7 al ¥ .
S-P 7| Plasmoid
2L ", ‘
Linear stage / — nonlinear stage - |
% : | 10° 10° 10°
5 10 15 SL
t
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(e
|

YmtlL ~

deal” tearing mode

_1
2
L

<(7)

If we consider a “collapsing” current sheet, i.e. a thinning current sheet,
whose aspect ratio a/L is decreasing. Write

we get

S ¢

—-(1-3a)/2
Y, T, ~ SL( a)/

Consider the case when §; — oo:

Thin current sheet is extremely unstable
/

If a > % (current sheet too thin): positive scaling with S;, the growth rate diverges to infinity.

If a < § (current sheet too thick): negative scaling with S;, the growth rate goes to zero.

If a = i: finite growth rate y,, 7, ~

o(1)

~~a

Current sheet is mildly unstable

N\

independent i;S'L Thick current sheet is extremely stable

“ideal” tearing mode

Tearing Mode Instability, Chen Shi B fx (PUCCi et al 2014)



S—(1—3a)/2

YmTL ~ 9

If a = %z finite growth rate y,,,7; ~ 0(1), independent of S;

“ideal” tearing mode

'D.? [ T T T T T T T T T T T T T T I

TTa

0.3 |

S :
—— 5=10 " ] (Pucci et al, 2014)

{::I.E : 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 I 1 1 1 ]
: 0.06 0.08 0.10 012
k kL
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Recursive reconnection process

0.02 S :
An initially thick current sheet with 0.01 =
o T . - O >——
o> S, 7’7 this current sheet is very N  —— R
-0. =
stable. l 002 26 28 30 32 34 36 38
0.02 e e — t=191, | o
0.01> -200
s o.oo@ — G 400
Due to some mechanism, the current ~0.01 >/__\
: : -0. a
sheet thins, and eventually thins to e 25 BT £Z di BE  ah
il |
L l
Then the tearing instability grows,
leading to formation of plasmoid
chain

|

Tearing Mode Instability, Chen Shi A fx (Tenerani et al, 2015b)



The X-points between plasmoids
dynamically lengthen (nonlinear
process) and become the secondary
current sheets l

The secondary current sheets
approach the critical aspect ratio

G~5.") l

Secondary current sheets become
tearing unstable and new
plasmoids form

4‘ . - % .
= 29 3.0 3.1 3.2 3.3 3.4 35 Iz
Generates a power spectrum: P(By) X kx5 xIL
(Tenerani and Velli, 2019) Tearing Mode Instability, Chen Shi it /& (Tenerani et al, 2015b)



Other effects — viscosity

P =v/n (v: viscosity)

0.0007 — -
— P=10'
0.0006 E — P=10°
P=10f
0.0005 —gjgﬂ 1 1
-10™" ~S 2P 4
0.0004F ~- B=10 YmTa ~ S

— P=10""°
e P=0

0.0003
0.0002

0.0001 E

0.0000 — —— e e
0.001 0.010 0.100 1.000
ka

(Tenerani et al, 2015a)

See also (Loureiro et al, 2013)

Viscosity suppresses the tearing mode

Tearing Mode Instability, Chen Shi B fx



Other effects — background flow

10 4

______ — = 330

= T~ e 5 = 600

- — 5=1000 S
R4 S = 5=2000

’ e 5 = 6000

Z — 5= 10000

F e 5= 10000, no flow

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ka

(Shi et al, 2018)

A Sweet-Parker type background flow (inflow+outflow):

1. Decreases the growth rate

2. Leads to a linear “saturation” due to the stretch of the magnetic island by flows

Tearing Mode Instability, Chen Shi B fx

max(|bay[)(t)

107 4

1077 4

,_.
3
L5

.,
i

-

[=
1
-

,_.
3
w

.,_.
3
o

— 5=10000
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Other effects — Hall effect

1
YnTa ~ S72(1 + CPY)

107~ = ' ® \(-’\ At
E © a0 @ . Tt -
s B y R .
o+ &+ » &+ @ - Hall effect increases the linear
4 \ \ —_ .
10°E -»@_ . f s | growth rate of tearing mode.
- A A Ag_q0° 7
- A A Ag g0 -
- | S=10° -
_10—5 | | IIIIIII | . | IIIIIII | . | IIIIIII B 1 L1l
0.01 0.10 1.00 10.00 100.00
| g1
(Pucci et al, 2017) Ph = —S2
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Tearing mode in 3D — guide field
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Summary

* A resistive current sheet is subject to tearing mode instability
* The instability requires long wavelength: ka < 1
* Linear growth rate y (k) is a non-monotonic function:

1. For large k, % < 0, for small k, % > ()

2. The largest %rowth rate is located at k,,a ~ S™'/* and has a value
YmTa ~ s~

* Nonlinearly, the tearing instability leads to the formation of a
chain of plasmoids whose length corresponds to k,,

* In a thinning current sheet, the growth rate transits from

extremely slow to extremely fast when % ~S, 1/3



