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Magnetic reconnection—explosive energy release

Christe et al., 2017

CME and solar flare

Eastwood et al., 2017

substorm
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What triggers the fast magnetic reconnection?

Hesse and Cassak, 2019

Steadily-reconnecting current sheet

Tearing Mode Instability, Chen Shi 时辰

at MHD scales…



Onset of reconnection

• Need to break the “frozen-in” condition

• Generalized Ohm’s law:

𝑬 + 𝒖 × 𝑩 = 𝜂𝑱 +
𝑱 × 𝑩

𝑛𝑒
−
𝛁 ⋅ 𝑷𝒆
𝑛𝑒

+
𝑚𝑒

𝑛𝑒2
𝜕𝑱

𝜕𝑡

resistivity Hall Electron 

pressure
Electron 

inertia

Resistivity can be induced by collisions or wave-particle interactions 

Ideal MHD does not allow “reconnection” of field lines
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Normalization of (viscous-resistive)-MHD equations
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𝜕𝜌

𝜕𝑡
+ ∇ ⋅ 𝜌𝑽 = 0

𝜌
𝜕𝑽

𝜕𝑡
+ 𝑽 ⋅ ∇𝑽 = −∇𝑃 + 𝑱 × 𝑩 + 𝜈𝜌∇2𝑽

𝜕𝑩

𝜕𝑡
= ∇ × 𝑽 × 𝑩 + 𝜂∇2𝑩

𝑑 𝑃𝜌−𝜅

𝑑𝑡
= 0

MHD equation, like the Navier-Stokes equation, can be non-dimensionalized.

Here we have neglected 𝜇0

or ∇ ⋅ 𝜈𝜌∇𝑽
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Choose a set of reference values: ( ҧ𝜌, ത𝐵, 𝐿)

From the three values, we can further define reference speed and time:

ത𝑉 =
ത𝐵

𝜇0 ҧ𝜌

𝜏 = 𝐿/ത𝑉
and pressure:

ത𝑃 = ҧ𝜌 ത𝑉2 = ത𝐵2/𝜇0

We can then normalize all the fields to the above values, e.g.,

𝜌 = ҧ𝜌 𝜌, 𝑽 = ത𝑉෩𝑽
Here the “∼” values are normalized fields.

They are arbitrary
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Note that the derivatives also need to be normalized:
𝜕

𝜕𝑡
=
1

𝜏

𝜕

𝜕 ǁ𝑡
, ∇=

1

𝐿
෩∇

The MHD equation set becomes:

𝜕 𝜌

𝜕 ǁ𝑡
+ ෩∇ ⋅ 𝜌෩𝑽 = 0

𝜌
𝜕෩𝑽

𝜕 ǁ𝑡
+ ෩𝑽 ⋅ ෩∇෩𝑽 = −෩∇ ෨𝑃 + ෨𝑱 × ෩𝑩 +

1

𝑅
𝜌෩∇2෩𝑽

𝜕෩𝑩

𝜕 ǁ𝑡
= ෩∇ × ෩𝑽 × ෩𝑩 +

1

𝑆
෩∇2෩𝑩

𝑑 ෨𝑃 𝜌−𝜅

𝑑 ǁ𝑡
= 0

Reynolds number 𝑅 =
𝐿ഥ𝑉

𝜈

Lundquist number 𝑆 =
𝐿ഥ𝑉

𝜂

a.k.a. magnetic Reynolds number

Exercise: show that the (magnetic) Reynolds 

number is actually 𝜏𝑑/𝜏𝑐 where 𝜏𝑑 is the diffusion 

time scale, 𝜏𝑐 is the convection time scale



Sweet-Parker model

Sweet-Parker current sheet

Ji et al., 1999

𝑽 ⋅ ∇𝑽 =
1

𝜇0𝜌
𝑩 ⋅ ∇𝑩

Along the central vertical line (𝑥 = 0): 
𝑉𝑥 = 𝐵𝑦 ≡ 0, 𝑉𝑦 ≠ 0, 𝐵𝑥 ≠ 0:

𝑃𝑇 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑉𝑦
𝜕𝑽

𝜕𝑦
=

1

𝜇0𝜌
𝐵𝑥

𝜕𝑩

𝜕𝑥

𝑦 direction: 𝑉𝑦
𝜕𝑉𝑦

𝜕𝑦
=

1

𝜇0𝜌
𝐵𝑥

𝜕𝐵𝑦

𝜕𝑥

𝑥 direction is exactly 0 
𝜕𝐵𝑥

𝜕𝑥
≡ 0

𝑉𝑦
2

𝑎
=
𝐵𝑥𝐵𝑦

𝜇0𝜌𝐿

Along the central horizontal line (𝑦 = 0): 
𝑉𝑦 = 𝐵𝑥 ≡ 0, 𝑉𝑥 ≠ 0, 𝐵𝑦 ≠ 0:

𝑉𝑥
𝜕𝑽

𝜕𝑥
=

1

𝜇0𝜌
𝐵𝑦

𝜕𝑩

𝜕𝑦

𝑦 direction is exactly 0 
𝜕𝐵𝑦

𝜕𝑥
≡ 0

𝑥 direction: 𝑉𝑥
𝜕𝑉𝑥

𝜕𝑥
=

1

𝜇0𝜌
𝐵𝑦

𝜕𝐵𝑥

𝜕𝑦

𝑉𝑥
2

𝐿
=
𝐵𝑥𝐵𝑦

𝜇0𝜌𝑎

𝑥

𝑦
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These quantities are 
averaged values



∇ ⋅ 𝑽 = 0

𝜕𝑉𝑥
𝜕𝑥

+
𝜕𝑉𝑦

𝜕𝑦
= 0

𝑉𝑥
𝐿
∼
𝑉𝑦

𝑎

Incompressibility:

∇ ⋅ 𝑩 = 0

𝐵𝑥
𝐿
∼
𝐵𝑦

𝑎

Similarly:

𝑉𝑦
2

𝑎
=
𝐵𝑥𝐵𝑦

𝜇0𝜌𝐿

𝑉𝑥
2

𝐿
=
𝐵𝑥𝐵𝑦

𝜇0𝜌𝑎

𝑉𝑦
2 ∼

𝐵𝑦
2

𝜇0𝜌

𝑉𝑥
2 ∼

𝐵𝑥
2

𝜇0𝜌

𝑩 ⋅ ∇𝑽 − 𝑽 ⋅ ∇𝑩 + 𝜂∇2𝑩 = 0

∇ × 𝑽 × 𝑩 = 𝑩 ⋅ ∇𝑽 − 𝑽 ⋅ ∇𝑩

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
≈

𝜕2

𝜕𝑦2
≈

1

𝑎2

Along the central vertical line (𝑥 = 0)

apply a similar analysis, we get:

𝑉𝑦 ∼
𝜂

𝑎

Thus, we also have:

𝑉𝑥 ∼
𝜂𝐿

𝑎2
∼ 𝑉𝐴

Remind: 𝑆 = 𝐿𝑉𝐴/𝜂

𝑉𝐴: Upstream Alfvén speed

𝑎

𝐿
∼ 𝑆−1/2

Reconnection rate:

𝑅 = 𝑉𝑦𝐵𝑥 = 𝑉𝑥𝐵𝑥
𝑎

𝐿
∝ 𝑆−1/2

SLOW!
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Convection 

balances 

diffusion of 𝑩



• A current sheet has free energy…

• resistivity can help release the energy

• Sweet-Parker model is a stable way to convert magnetic energy to 
kinetic energy through diffusion (resistivity)

• However, instability  also exists in a resistive current sheet—

tearing mode instability which can release energy faster!

Are resistive current sheets stable?

(Furth et al., 1963, PhFl)
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Linearize the MHD equation set

Background fields:
𝜌 = 𝐶𝑜𝑛𝑠𝑡
𝑃𝑇 = 𝐶𝑜𝑛𝑠𝑡

𝑽 ≡ 0
𝑩 = 𝐵𝑥 𝑦 Ƹ𝑒𝑥 + 𝐵𝑧 𝑦 Ƹ𝑒𝑧

1D configuration: infinite along 𝑥 direction, the fields are functions of 𝑦 only.

𝑩 ⋅ ∇𝑩 ≡ 0 Momentum equation is satisfied

Faraday equation is not satisfied: 𝑬 = −𝑽 × 𝑩 + 𝜂𝑱 = 𝜂𝑱, thus we have:
𝜕𝑩

𝜕𝑡
= 𝜂∇2𝑩

There is diffusion of the background magnetic field. But we only discuss the very 

small resistivity case, so the diffusion is slow compared with the tearing instability
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First-order fields: 𝜌1 ≡ 0 (assume incompressibility), 𝑝, 𝒖, 𝒃 and we write any 

perturbation in the form

𝑓 𝑥, 𝑦, 𝑧, 𝑡 = 𝑓 𝑦 exp(𝑖𝑘𝑥 + 𝛾𝑡)

This is equivalent to apply a Fourier transform in 𝑥 and a Fourier (Laplace) 

transform in 𝑡 to the linearized equation set 

𝜌
𝜕𝑽

𝜕𝑡
+ 𝜌𝑽 ⋅ ∇𝑽 = −∇ 𝑃 +

𝐵2

2𝜇0
+

1

𝜇0
𝑩 ⋅ ∇𝑩

Momentum equation:
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𝜌𝛾𝒖 0 𝑝

𝐵2 = 𝑩 + 𝒃 ⋅ 𝑩 + 𝒃 = 𝐵2 + 2𝑩 ⋅ 𝒃 + 𝑏2

1st order

𝑩 ⋅ ∇𝒃 + 𝒃 ⋅ ∇𝑩

𝜇0

𝑩 ⋅ 𝒃

𝜇0

To eliminate the pressure term, take curl of the above equation (∇ × ∇𝑝𝑇 ≡ 0) 

𝛾∇ × 𝒖 = ∇ × (𝑩 ⋅ ∇𝒃 + 𝒃 ⋅ ∇𝑩) Let 
𝑩

𝜇0𝜌
→ 𝑩
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𝑩 ⋅ ∇𝒃 = 𝑖𝑘𝐵𝑥𝒃

𝛾∇ × 𝒖 = ∇ × (𝑩 ⋅ ∇𝒃 + 𝒃 ⋅ ∇𝑩)

𝒃 ⋅ ∇𝑩 = 𝑏𝑦
𝜕𝑩

𝜕𝑦
Take the 𝑧-component of the equation:

𝛾 𝑢𝑦
′′ − 𝑘2𝑢𝑦 = 𝑖𝑘 𝐵𝑥 𝑏𝑦

′′ − 𝑘2𝑏𝑦 − 𝐵𝑥
′′𝑏𝑦

∇ ⋅ 𝒃 = 𝑖𝑘𝑏𝑥 + 𝑏𝑦
′ = 0 𝑏𝑥 =

𝑖

𝑘
𝑏𝑦
′

𝑓′ =
𝜕𝑓

𝜕𝑦
∇ ⋅ 𝒖 = 𝑖𝑘𝑢𝑥 + 𝑢𝑦

′ = 0 𝑢𝑥 =
𝑖

𝑘
𝑢𝑦
′

This is an equation of 𝑢𝑦 and 𝑏𝑦 only 
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Faraday’s equation
𝜕𝑩

𝜕𝑡
= ∇ × 𝑽 × 𝑩 + 𝜂∇2𝑩

𝛾𝒃 = ∇ × 𝒖 × 𝑩 + 𝜂∇2𝒃

Take the 𝑦-component of the equation:

𝛾𝑏𝑦 = 𝑖𝑘𝐵𝑥𝑢𝑦 + 𝜂(𝑏𝑦
′′ − 𝑘2𝑏𝑦)

∇ × 𝒖 × 𝑩 = 𝑩 ⋅ ∇𝒖 − 𝒖 ⋅ ∇𝑩 (∇ ⋅ 𝒖 = ∇ ⋅ 𝑩 = 0)

𝑩 ⋅ ∇𝒖 = 𝑖𝑘𝐵𝑥𝒖 𝒖 ⋅ ∇𝑩 = 𝑢𝑦
𝜕𝑩

𝜕𝑦

∇2𝒃 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
𝒃 = −𝑘2 +

𝜕2

𝜕𝑦2
𝒃

This is an equation of 𝑢𝑦 and 𝑏𝑦 only 
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𝛾 𝑢𝑦
′′ − 𝑘2𝑢𝑦 = 𝑖𝑘 𝐵𝑥 𝑏𝑦

′′ − 𝑘2𝑏𝑦 − 𝐵𝑥
′′𝑏𝑦

𝛾𝑏𝑦 = 𝑖𝑘𝐵𝑥𝑢𝑦 + 𝜂(𝑏𝑦
′′ − 𝑘2𝑏𝑦)

Basic equation set for following analysis
For convenience, use 𝑢, 𝑏, 𝐵 to replace 𝑢𝑦, 𝑏𝑦 , 𝐵𝑥

⚫ 𝐵𝑧 does not enter the equation set: it does not affect the growth rate of 1D tearing at all!
◼ But it affects the functions 𝑏𝑧 𝑦 and 𝑢𝑧 𝑦 . You can derive the equations for them as an exercise.

◼ If 𝒌 = 𝑘𝑥 Ƹ𝑒𝑥 + 𝑘𝑧 Ƹ𝑒𝑧, 𝐵𝑧 will influence the growth rage (only slightly), see (Shi et al., 2020)

⚫ The equation seems to be complex (both real and imaginary terms), but it’s NOT!
◼ Do the transform: 𝑖𝑏 → 𝑏 the equation set will become the following:

𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

purely real

There is no 

oscillation: tearing 

mode is purely 

growing/decaying 

mode



Parity of 𝑢 and 𝑏
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𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

𝐵 𝑦 is odd, 𝐵′ 𝑦 is even, 𝐵′′ 𝑦 is odd

Theoretically, there are two possibilities:

(1) 𝑢 is even, 𝑏 is odd

This is not desirable: 𝑏𝑦 0 ≡ 0, no reconnection, wavy current sheet

(2) 𝒖 is odd, 𝒃 is even

𝑢𝑦 0 ≡ 0, 𝑏𝑦 0 ≠ 0. This is reconnection.

Note: odd function × odd function → even function

odd function × even function → odd function

𝐵 = tanh(𝑦)



The Boundary Layer Problem
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𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

The highest-order derivative term is multiplied by a very small coefficient:

boundary layer problem

• The 𝜂 term is important only in a very thin layer 𝑦 ≲ 𝛿.

• 𝛿 is an unknown quantity depending on 𝜂 & 𝑘

Consider 𝜂 → 0

Generally, to solve the boundary layer problem: 
• We first consider the outer region where 𝑦 ≫ 𝛿. 

• Then we consider the inner region where 𝑦 ≲ 𝛿. 

• Then we match the two solutions at 𝑦 ∼ 𝛿 (as the solution must converge here)



Outer region 𝑦 ≫ 𝛿
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𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

Here, the resistive term (𝜂 𝑏′′ − 𝑘2𝑏 ) is negligible

The 2nd equation gives

𝑢 = −
𝛾

𝑘𝐵
𝑏

Then plug it into the first equation, we get an equation

𝑏′′ − 𝑘2𝑏 −
𝐵′′

𝐵
𝑏 + 𝑂 𝛾2 = 0

𝑂(𝛾2) are terms proportional to 𝛾2 which can be neglected in the limit 𝜂 → 0, because 𝛾
should naturally be zero if there is no resistivity (tearing mode is resistive instability!) 

So, we are left with the equation (which is just the r.h.s. of the first equation):

𝑏′′ − 𝑘2𝑏 −
𝐵′′

𝐵
𝑏 = 0
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𝑏′′ − 𝑘2𝑏 −
𝐵′′

𝐵
𝑏 = 0

Consider the Harris-type current sheet

𝐵 𝑦 = 𝐵0 tanh
𝑦

𝑎
𝑎: current sheet thickness

Note: 𝑎 ≠ 𝛿!

𝑏′′

𝑏
= 𝑘2 −

2

𝑎2
sech2

𝑦

𝑎

Fortunately, this equation has analytic solution:

𝑏 =

𝑒−𝑘𝑦 1 +
1

𝑘𝑎
tanh

𝑦

𝑎
, 𝑦 ≥ 0

𝑒𝑘𝑦 1 −
1

𝑘𝑎
tanh

𝑦

𝑎
, 𝑦 ≤ 0

Note: we have imposed the requirement:

𝑏 𝑦 = ±∞ = 0
Otherwise, both the two branches are 

exact solutions on 𝑦 ∈ (−∞,+∞)
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𝑏 =

𝑒−𝑘𝑦 1 +
1

𝑘𝑎
tanh

𝑦

𝑎
, 𝑦 ≥ 0

𝑒𝑘𝑦 1 −
1

𝑘𝑎
tanh

𝑦

𝑎
, 𝑦 ≤ 0

𝑏′ is discontinuous

𝑏 ∝ 𝑒−𝑘 𝑦

Far from the center of the current sheet, both 𝑏 and 𝑢
decay exponentially (∝ exp −𝑘𝑦 )

As 𝑦 → 0, 𝑏′ is discontinuous, i.e.

𝑏′ 𝑦 = 0+ ≠ 𝑏′ 𝑦 = 0−

as 𝑏′ 𝑦 = 0+ = −𝑏′ 𝑦 = 0− . Thus, to ensure 𝑏′′ 𝑦 = 0
is finite, we need 𝑏′ 𝑦 = 0+ = 𝑏′ 𝑦 = 0− = 0

Then, we need to analyze the inner layer 𝑦 ≲ 𝛿

Let’s define a useful quantity derived from the outer solution:

Δ = 𝑎
𝑏′ 0+ − 𝑏′(0−)

𝑏(0)
=
2(1 − 𝑘2𝑎2)

𝑘𝑎
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Inner region 𝑦 ≲ 𝛿

𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

We are very close to 𝑦 = 0. Let’s do some comparisons.

Similarly, we expect 
𝑘2𝑢

𝑢′′
≪ 1,

𝑘2𝑏

𝑏′′
≪ 1

𝐵 = 𝐵0tanh(
𝑦

𝑎
), 𝐵′′ = −

2𝐵0

𝑎2
tanh

𝑦

𝑎
sech2

𝑦

𝑎

At 𝑦 → 0, we have: 
𝐵′′𝑏

𝐵𝑏′′
= −2sech2

𝑦

𝑎

𝑏

𝑎2𝑏′′
∼

𝑏

𝑎2𝑏′′
≪ 1

Because the layer is very thin so 𝑏&𝑢 change very fast 

𝑏′′ ∝ (
1

𝑎𝛿
𝑜𝑟

1

𝛿2
) ≫

1

𝑎2
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Inside the inner layer, we have:

𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

𝛾𝑢′′ ∼ 𝑘𝐵𝑏′′

𝛾𝑏 ∼ −𝑘𝐵𝑢 ∼ 𝜂𝑏′′

From now on, we are considering all the fields at a location 𝑦 = 𝜀𝛿 with 𝜀 ≲ 1.

For convenience, we throw away 𝜀 and write 𝑦 = 𝛿.

First, we have 𝐵 𝛿 ≈ 𝐵′ 0 𝛿.

Second, as 𝑢 is an odd function (𝑢 0 = 0), we have: 𝑢′′ 𝛿 ≈ −
𝑢(𝛿)

𝛿2
.

Last, estimate of 𝒃′′ should be made with caution, as 𝑏 is an even function.

Hint: Taylor expansion: 𝑢 0 = 𝑢 𝛿 +⋯
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Taylor expansion:

𝑏′ 0 = 𝑏′ 𝛿 − 𝛿 × 𝑏′′ 𝛿 + 𝑂(𝛿2)
Note that 𝑏′ 0 = 0, we have:

𝑏′′ 𝛿 ∼
𝑏′(𝛿)

𝛿

Recall the definition: Δ = 𝑎
𝑏′ 0+ −𝑏′(0−)

𝑏(0)
=

2(1−𝑘2𝑎2)

𝑘𝑎
.

Note that 0± refers to ±𝛿 here because this is from the outer 

solution.

We can write 𝑏′ 𝛿 ≈ Δ𝑏(0)/𝑎 and then:

𝑏′′ 𝛿 ∼
Δ𝑏 0

𝑎𝛿
≈
Δ𝑏(𝛿)

𝑎𝛿
as 𝑏 𝛿 = 𝑏 0 + 𝑂 𝛿2 ≈ 𝑏(0)

Note: for now we are assuming 𝑘𝑎 ≫
𝛿

𝑎
, i.e., the wave length is not too long (or 𝑘 is not too small) so 

that Δ is a finite value and 𝑏′′ ∝ 𝛿−1. This is the traditionally-called constant-𝝍 regime. 

However, as 𝑘𝑎 becomes smaller, 𝑏 becomes steeper (see the figure above). When 𝑘𝑎 ≲
𝛿

𝑎
≪ 1, we find 

that Δ ≈
2𝑎

𝛿
and thus 𝑏′′ ∝ 𝛿−2, similar to 𝑢. This is the so-called non-constant-𝝍 regime.

𝜓 is the magnetic flux function 
such that ∇ × (𝜓 Ƹ𝑒𝑧) = 𝒃 and 

thus 𝜓 =
𝑖𝑏𝑦

𝑘
∝ 𝑏

Because 𝜓, or 𝑏, is smooth

Because 𝜓, or 𝑏, is very steep
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constant-𝜓 regime (𝑘𝑎 ≫
𝛿

𝑎
)

Now we have: 𝑢′′ ∼ −𝑢/𝛿2, 𝐵 ∼ 𝐵′𝛿, 𝑏′′ ∼ Δ𝑏/(𝑎𝛿)

𝛾𝑢′′ ∼ 𝑘𝐵𝑏′′

𝛾𝑏 ∼ −𝑘𝐵𝑢 ∼ 𝜂𝑏′′
Balance relations:

From 𝛾𝑏 ∼ 𝜂𝑏′′ we get (use the above estimate of 𝑏′′):

𝛾 ∼
𝜂Δ

𝑎𝛿
Then, from 𝛾𝑢′′ ∼ 𝑘𝐵𝑏′′ we get 

𝛾𝑢 ∼ −𝑘𝐵′Δ𝛿2𝑏/𝑎

In addition, we have the relation 𝛾𝑏 ∼ −𝑘𝐵𝑢, which gives

𝛾𝑏 ∼ −𝑘𝐵′𝛿𝑢

Then we can combine the three relations to eliminate 𝑢, 𝑏 and 𝛿 and get:

𝛾5 ∼ 𝑘𝐵′ 2Δ4𝜂3/𝑎4

We see Δ must be 

positive if we want 𝛾
to be real (instability)

𝛾2 ∼
𝑘𝐵′ 2𝛿3

𝑎
Δ
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𝛾5 ∼
𝑘𝐵′ 2Δ4𝜂3

𝑎4

𝛾𝜏𝑎 ∼
𝑎𝐵′

ത𝐵

2
5

1 − 𝑘2𝑎2
4
5 𝑘𝑎 −

2
5𝑆−

3
5

Δ =
2(1 − 𝑘2𝑎2)

𝑘𝑎

𝑆 =
𝑎 ത𝐵

𝜂

ത𝐵 is the upstream Alfvén speed

As we see previously, Δ should be positive in order to have a growing mode, i.e., 

the wave length must be longer than 𝑎
𝑘𝑎 < 1

Then one can easily show that 1 − 𝑘2𝑎2
4

5(𝑘𝑎)−
2

5 is a decreasing function of 𝑘
for 0 < 𝑘𝑎 < 1. 

Especially, when 𝛿/𝑎 ≪ 𝑘𝑎 ≪ 1, we have 𝛾 ∝ (𝑘𝑎)−
2

5𝑆−
3

5

𝜏𝑎 = 𝑎/ ത𝐵: Alfvén crossing time
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non-constant-𝜓 regime (𝑘𝑎 ≲
𝛿

𝑎
)

Now we have: 𝑢′′ ∼ −𝑢/𝛿2, 𝐵 ∼ 𝐵′𝛿, 𝑏′′ ∼ 𝑏/𝛿2

𝛾𝑢′′ ∼ 𝑘𝐵𝑏′′

𝛾𝑏 ∼ −𝑘𝐵𝑢 ∼ 𝜂𝑏′′
Balance relations:

From 𝛾𝑏 ∼ 𝜂𝑏′′ we get (use the above estimate of 𝑏′′):

𝛾 ∼
𝜂

𝛿2
Then, from 𝛾𝑢′′ ∼ 𝑘𝐵𝑏′′ we get 

𝛾𝑢 ∼ −𝑘𝐵′𝛿𝑏

In addition, we have the relation 𝛾𝑏 ∼ −𝑘𝐵𝑢, which gives

𝛾𝑏 ∼ −𝑘𝐵′𝛿𝑢

Then we can combine the three relations to eliminate 𝑢, 𝑏 and 𝛿 and get:

𝛾3 ∼ 𝑘𝐵′ 2𝜂
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𝛾3 ∼ 𝑘𝐵′ 2𝜂 𝑆 =
𝑎 ത𝐵

𝜂
ത𝐵 is the upstream Alfvén speed

𝛾𝜏𝑎 ∼
𝑎𝐵′

ത𝐵

2
3

𝑘𝑎
2
3𝑆−1/3

𝜏𝑎 = 𝑎/ ത𝐵: Alfvén crossing time

In contrast to the constant-𝜓 regime, now 𝛾 is an increasing function of 𝑘

constant-𝝍 non-constant-𝝍

𝑘 range 𝛿/𝑎 ≪ 𝑘𝑎 < 1 𝑘𝑎 ≲ 𝛿/𝑎

𝛾 ∼
1 − 𝑘2𝑎2

4
5 𝑘𝑎 −

2
5𝑆−

3
5 𝑘𝑎

2
3𝑆−1/3

𝛾 and 𝑘 Decreasing with 𝑘 Increasing with 𝑘

Apparently, there is a critical point around 𝑘𝑎 ∼ 𝛿/𝑎 that separates the two regimes.

And this critical point corresponds to the peak of the 𝛾(𝑘) curve.
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Around the critical point (i.e. 𝑘𝑎 ∼ 𝛿/𝑎), we have

𝛾𝜏𝑎 ∼ 𝑘𝑎 −
2
5𝑆−

3
5

for constant-𝜓 regime (large-𝑘 branch), and

𝛾𝜏𝑎 ∼ 𝑘𝑎
2
3𝑆−

1
3

for non-constant-𝜓 regime (small-k branch).

Thus, to match the two solutions, we have:

𝑘𝑚𝑎
−
2
5𝑆−

3
5 ∼ 𝑘𝑚𝑎

2
3𝑆−

1
3

which gives

𝑘𝑚𝑎 ∼ 𝑆−
1
4

𝑘𝑚 is the wavenumber corresponding to the maximum growth rate
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Then we plug 𝑘𝑚 into the expression for 𝛾 to get the maximum 𝛾:

𝛾𝑚𝜏𝑎 ∼ 𝑆−
1
2

One can test using either 𝛾 ∼
𝜂Δ

𝑎𝛿
or 𝛾 ∼

𝜂

𝛿2
(the balance relations 𝛾𝑏 ∼ 𝜂𝑏′′ for 

the two regimes) that at this point, there is
𝛿𝑚
𝑎

∼ 𝑆−1/4

consistent with the assumption 𝑘𝑚𝑎 ∼ 𝛿𝑚/𝑎

𝑘𝑚𝑎 ∼ 𝑆−
1
4



To conclude this part
• The linear tearing instability requires 𝑘𝑎 < 1

• The 𝛾(𝑘) curve consists of two parts
• The large-𝑘, or constant-𝜓, regime where 𝛾 decreases with 𝑘

• The small-𝑘, or non-constant-𝜓, regime where 𝛾 increases with 𝑘

• Most importantly, the intersection of the two regimes is the 
fastest-growing mode, which has the following scaling relations:

• 𝛿𝑚/𝑎 ∼ 𝑆−
1

4

• 𝛾𝑚𝜏𝑎 ∼ 𝑆−
1

2

• 𝑘𝑚𝑎 ∼ 𝑆−
1

4
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constant-𝜓

non-constant-𝜓

𝛾𝑚

𝑘𝑚Numerically solved 𝛾(𝑘) curve for 𝑆 = 104



Numerically solved eigen-functions
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𝑆 = 104, 𝑘𝑎 = 0.3

Inner layer The equation set that we are solving is a 

boundary-value problem, i.e. an ODE set with 

boundary condition (𝑢, 𝑏)ȁ𝑦=±∞ = 0 and an 

undetermined eigenvalue 𝛾. This kind of 

problem can be solved numerically with 

existing packages (e.g. SciPy solve_bvp)

In practice, we impose the boundary condition 

(𝑢, 𝑏) ∝ 𝑒−𝑘 𝑦 at two boundaries far from the 

center of the current sheet (because we cannot 

impose boundary conditions at infinity 

numerically).

𝛾 𝑢′′ − 𝑘2𝑢 = 𝑘 𝐵 𝑏′′ − 𝑘2𝑏 − 𝐵′′𝑏
𝛾𝑏 = −𝑘𝐵𝑢 + 𝜂(𝑏′′ − 𝑘2𝑏)

Example of a numerically-solved 𝑢&𝑏



Nonlinear stage of tearing mode -- Plasmoid

Tearing Mode Instability, Chen Shi 时辰

𝜆𝑚 =
2𝜋

𝑘𝑚
= 2𝜋𝑎𝑆1/4

𝑎

(Bhattacharjee et al, 2009)

Q: how to estimate the width of the plasmoid?

A: 𝑤 ≅ 4 𝜓/𝜓0
′′ (Biksamp 2005 Eq (4.5))



The tearing instability seems to be slow…

Even the fastest growing mode has a negative scaling relation with 

𝑆: 𝛾𝑚𝜏𝑎 ∼ 𝑆−
1

2. This means that, the larger 𝑆, or the smaller 𝜂, leads 
to a smaller 𝛾𝑚𝜏𝑎 . And 𝑆 → ∞ gives 𝛾𝑚𝜏𝑎 → 0.

This is true. But, we should notice that, so far, we are only 
discussing the one-dimensional current sheet, i.e. the current sheet 
is infinite along 𝑥 direction, and we normalize everything to the 
thickness of the current sheet 𝑎. However, the current sheet must 
have a finite length 𝐿, for example, the Sweet-Parker current sheet.

Tearing Mode Instability, Chen Shi 时辰



Aspect ratio and the growth rate
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Recall: in Sweet-Parker current sheet model, the Lundquist number is defined as

𝑆𝐿 =
𝐿𝑉𝐴
𝜂

instead of 

𝑆 =
𝑎𝑉𝐴
𝜂

Let’s renormalize everything by 𝐿 instead of 𝑎. We have

𝜏𝐿 =
𝐿

𝑉𝐴
= 𝜏𝑎 ×

𝐿

𝑎

𝑆𝐿 = 𝑆𝑎 ×
𝐿

𝑎

For a 2D current sheet, as its thickness is usually dynamically evolving, we should 

use its length to measure the time scales (convection, diffusion etc.)
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𝛾𝑚𝜏𝑎 ∼ 𝑆−
1
2

𝛾𝑚𝜏𝐿 ×
𝑎

𝐿
∼ 𝑆𝐿

−
1
2 ×

𝑎

𝐿

−
1
2

𝛾𝑚𝜏𝐿 ∼ 𝑆𝐿
−
1
2 ×

𝑎

𝐿

−
3
2

Aspect ratio is important! 
Recall: Sweet-Parker current sheet has aspect ratio

𝑎

𝐿
∼ 𝑆𝐿

−
1
2

This gives

𝛾𝑚𝜏𝐿 𝑆𝑃 ∼ 𝑆𝐿

1
4

Positive scaling with 𝑆𝐿 :

𝛾𝑚𝜏𝐿 → ∞ as 𝑆𝐿 → ∞

(Loureiro et al., 2007)
(Tajima & Shibata, 2003)

Exercise: show the 

wavenumber of the 

maximum growing 

mode is

𝑘𝑚𝐿 ∼ 𝑆𝐿

3
8

for Sweet-Parker CS
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For Sweet-Parker current sheet (
𝑎

𝐿
∼ 𝑆𝐿

−1/2
), the linear growth rate of tearing 

instability is fast:

𝛾𝑚𝜏𝐿 𝑆𝑃 ∼ 𝑆𝐿

1
4

which means 𝛾𝑚𝜏𝐿 → ∞ as 𝑆𝐿 → ∞.

In practice, the tearing mode cannot grow indefinitely because the growth will 

saturate when the amplitude is too large, i.e. the mode enters nonlinear stage.

(Bhattacharjee et al, 2009)

Reconnected flux Reconnection rate

Linear stage nonlinear stage

S-P Plasmoid



“ideal” tearing mode
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𝛾𝑚𝜏𝐿 ∼ 𝑆𝐿
−
1
2 ×

𝑎

𝐿

−
3
2

If we consider a “collapsing” current sheet, i.e. a thinning current sheet, 

whose aspect ratio 𝑎/𝐿 is decreasing. Write
𝑎

𝐿
∼ 𝑆𝐿

−𝛼

we get

𝛾𝑚𝜏𝐿 ∼ 𝑆𝐿
− 1−3𝛼 /2

Consider the case when 𝑆𝐿 → ∞:
If 𝛼 >

1

3
(current sheet too thin): positive scaling with 𝑆𝐿, the growth rate diverges to infinity.

If 𝛼 <
1

3
(current sheet too thick): negative scaling with 𝑆𝐿, the growth rate goes to zero.

If 𝛼 =
1

3
: finite growth rate 𝛾𝑚𝜏𝐿 ∼ 𝑂(1)

Thin current sheet is extremely unstable

Thick current sheet is extremely stable

Current sheet is mildly unstable

independent of 𝑺𝑳

“ideal” tearing mode

(Pucci et al, 2014)
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𝛾𝑚𝜏𝐿 ∼ 𝑆𝐿
− 1−3𝛼 /2

If 𝛼 =
1

3
: finite growth rate 𝛾𝑚𝜏𝐿 ∼ 𝑂(1), independent of 𝑆𝐿

“ideal” tearing mode

𝑘𝐿

𝑆𝐿
(Pucci et al, 2014)



Recursive reconnection process

An initially thick current sheet with 
𝑎

𝐿
> 𝑆𝐿

−1/3
: this current sheet is very 

stable.

Due to some mechanism, the current 
sheet thins, and eventually thins to 
𝑎

𝐿
∼ 𝑆𝐿

−1/3
. 

Then the tearing instability grows, 
leading to formation of plasmoid
chain

Tearing Mode Instability, Chen Shi 时辰 (Tenerani et al, 2015b)
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The X-points between plasmoids

dynamically lengthen (nonlinear 

process) and become the secondary 

current sheets

The secondary current sheets 

approach the critical aspect ratio 

(
𝑎

𝐿
∼ 𝑆𝐿

−1/3
)

Secondary current sheets become 

tearing unstable and new 

plasmoids form

(Tenerani et al, 2015b)
Generates a power spectrum: 𝑃 𝐵𝑦 ∝ 𝑘𝑥

−
4

5

(Tenerani and Velli, 2019)



Other effects – viscosity
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(Tenerani et al, 2015a)

𝑃 = 𝜈/𝜂 (𝜈: viscosity)

𝛾𝑚𝜏𝑎 ∼ 𝑆−
1
2𝑃−

1
4

See also (Loureiro et al, 2013)

Viscosity suppresses the tearing mode



Other effects – background flow
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𝑆𝐿

(Shi et al, 2018)

A Sweet-Parker type background flow (inflow+outflow): 

1. Decreases the growth rate

2. Leads to a linear “saturation” due to the stretch of the magnetic island by flows
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Other effects – Hall effect

𝑃ℎ =
𝑑𝑖
𝑎
𝑆
1
4

𝛾𝑚𝜏𝑎 ∼ 𝑆−
1
2(1 + 𝐶𝑃ℎ

𝜁
)

(Pucci et al, 2017)

Hall effect increases the linear 

growth rate of tearing mode.



Tearing mode in 3D – guide field
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𝐵𝑔/𝐵0

Large 𝑘𝑥 (constant-𝜓) regime: guide field can rise 

𝛾 a little bit with finite 𝑘𝑧.

Small 𝑘𝑥 regime: 𝛾 always decrease with 𝑘𝑧, i.e. a 

wave vector component along the guide field 

slows down the growth.

(Shi et al, 2020)

But overall, the fastest 

growing mode is always 

the 𝑘𝑧 = 0 mode, which 

is not affected by guide 

field at all.



Summary

• A resistive current sheet is subject to tearing mode instability

• The instability requires long wavelength: 𝑘𝑎 < 1

• Linear growth rate 𝛾(𝑘) is a non-monotonic function:

1. For large 𝑘, 
𝑑𝛾

𝑑𝑘
< 0, for small 𝑘, 

𝑑𝛾

𝑑𝑘
> 0

2. The largest growth rate is located at 𝑘𝑚𝑎 ∼ 𝑆−1/4 and has a value 
𝛾𝑚𝜏𝑎 ∼ 𝑆−1/2

• Nonlinearly, the tearing instability leads to the formation of a 
chain of plasmoids whose length corresponds to 𝑘𝑚

• In a thinning current sheet, the growth rate transits from 

extremely slow to extremely fast when 
𝑎

𝐿
∼ 𝑆𝐿

−1/3
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